Article Type

Original Study


Objective The aim of this study was to highlight the importance of cord blood S100B protein in the diagnosis of neonatal hypoxic–ischemic encephalopathy and determination of its severity. Background S100B is a calcium-binding protein and is a major component of the cytosol in various cell types. The S100B exerts significant influence on cellular metabolism, Ca2+ homeostasis, cytoskeletal modification, cell proliferation, and cell differentiation. The presence of S100B in the cerebrospinal fluid, serum, and amniotic fluid above threshold levels is used for diagnostic/prognostic purposes. Patients and methods This study included 30 asphyxiated newborns and 23 weight and gestational age-matched healthy neonates as controls. Immediately after birth, blood samples were collected from all neonates and values of S100B protein were determined using enzyme-linked immunosorbent assay technique. Results The mean serum level of S100B protein was significantly higher in the asphyxiated group than in the control group with a significant correlation between increased S100B protein level and severity of hypoxic–ischemic insult among patients. We found that at the cutoff level for serum S100B protein of 0.44 μg/l, the sensitivity was 97%, specificity was 91%, and accuracy of predicting neonatal asphyxia was 94%, with a positive predictive value of 94% and a negative predictive value of 95%. Conclusion It was concluded that S100B protein in the umbilical cord blood is a useful marker for early detection of neonatal hypoxic–ischemic encephalopathy in the full-term neonate and also in determining the grade of hypoxia.